Rank Minimization Approach for Solving Bmi Problems with Random Search

نویسنده

  • Soichi Ibaraki
چکیده

This paper presents the rank minimization approach to solve general bilinear matrix inequality (BMI) problems. Due to the NP-hardness of BMI problems, no proposed algorithm that globally solves general BMI problems is a polynomial-time algorithm. We present a local search algorithm based on the semidefinite programming (SDP) relaxation approach to indefinite quadratic programming, which is analogous to the well-known relaxation method for a certain class of combinatorial problems. Instead of applying the branch and bound (BB) method for global search, a linearization-based local search algorithm is employed to reduce the relaxation gap. Furthermore, a random search approach is introduced along with the deterministic approach. Four numerical experiments are presented to show the search performance of the proposed approach. 1 I n t r o d u c t i o n This paper considers an algorithm to solve BMI (bilinear matrix inequality) problems of the following form (Safonov et al. [1]): Find x {zi}i=l. . . ,N E ~N

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A heuristic approach for multi-stage sequence-dependent group scheduling problems

We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...

متن کامل

An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems

The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...

متن کامل

An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems

The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...

متن کامل

A Pseudo-polynomial Algorithm for Solving Rank Three Concave Production-transportation Problems

In this paper, we extend the parametrization technique of Tuy et al. into a class of concave production-transportation problems with m (≥ 3) sources, n terminals and three nonlinear variables. We develop a depth-first-search algorithm for finding a globally optimal solution of this rank three concave minimization problem and show that the algorithm is pseudo-polynonomial in the problem input le...

متن کامل

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001